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By exposing two-dimensional crystals to tunable substrate potentials one can selectively manipulate the
crystal’s phonon band structure. We explore this idea and study the overdamped lattice dynamics of colloidal
crystals subject to commensurate substrate potentials with sinusoidal modulations in up to two spatial direc-
tions. We furthermore show that the mean-square displacement of colloids in the crystal can be understood as
the Laplace transform of the phonon spectrum and discuss how our results can best be verified experimentally.
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I. INTRODUCTION

A two-dimensional �2D� colloidal suspension is an ideal
model system to study various properties of 2D solids, such
as their elastic behavior and the phonon band structure �1�,
but also more fundamental properties that are related to the
melting transition in 2D �2,3�. The reasons why colloidal
systems have been chosen for these studies are obvious; their
size and nature allow one, first, to easily tune the shape and
strength of the colloidal interaction and, second, to directly
observe the particles under a microscope—a property which
permits application of such a powerful tool as the video-
microscopy technique.

However, physical systems in strictly two dimensions are
rare in nature. Two-dimensional systems are more likely to
occur in the presence of some sort of substrate. A good ex-
ample for such combined systems are films—i.e., layers of
particles �ideally monolayers� adsorbed onto substrates �4�.
Again, colloidal suspensions can serve as model systems,
because substrates can be realized in various different ways.
A prominent example is an optical tweezer which allows the
trapping of colloids by laser beams �5�. Extended substrate
patterns can also be realized by interfering expanded laser
beams �6� or by scanning focused laser beams. Thereby, the
strength of the substrate potential can be tuned continuously
over a large range, simply by changing the intensity of the
laser beam.

The present work extends the theoretical framework of
2D lattice dynamics to systems where a 2D crystal is addi-
tionally subjected to a substrate potential. Specifically, we
ask whether or not it is possible to “tailor” phonon band
structures of 2D crystals by tuning the substrate potential.
Having in mind the experimental realization of our ideas, we
consider 2D colloidal crystals interacting with substrate po-
tentials that result from patterns of interfering laser beams
and calculate band structure, phonon spectrum, and elastic
constants of these crystals. The substrate potentials are as-
sumed to have sinusoidal modulations with wave vectors
pointing to lattice sites of the reciprocal lattice; i.e., the
wavelength and direction of these modulations match the
direction of, and distance between, lattice lines of the crystal.
As a result of the interaction between the colloids and these
commensurate substrate potentials, the usual system of

“springs” between the particles resulting from the colloidal
interaction is augmented by an additional system of tunable
and oriented springs connecting each particle to its lattice
site.

We find that bands can be reformed in many different
ways: they can be flattened or simply shifted without chang-
ing their shape. It is even possible to manipulate all bands in
such a way that the original band structure of the free crystal
reappears, only that it is shifted by a certain value. However,
this shift turns out to be essential as it leads to a mean-square
displacement that no longer diverges as it would in a free
crystal. In other words, while an unconstrained 2D crystal
lacks perfect order �and should therefore better be called a
“solid” rather than a “crystal”�, we here demonstrate how to
obtain a 2D crystal with exactly the same particle-particle
interaction as the free crystal, which, however, is showing
perfect order and a nondiverging mean-square displacement.

Our work also adds a new aspect to the research that has
been done on 2D colloidal fluids interacting with light fields.
Such a system was first investigated by Chowdhury et al. �6�
who showed that a sufficiently large potential induces a
phase transition to a structure which exhibits solidlike order.
Related experimental studies deal with topics such as laser-
induced freezing and melting �7–9�, strain-induced domain
formation �10�, and melting of 2D colloidal systems exposed
to 1D periodic light fields �11,12� or to periodic pinning ar-
rays with square symmetry �13�. Other studies investigate the
interaction of a system of colloidal “molecules” which are
arranged on regular lattices created by light potentials �14�.

The paper is organized as follows. After briefly summa-
rizing the essentials of the theory of lattice dynamics in Sec.
II, we formulate in Sec. III the Langevin equation for colloi-
dal crystals in the overdamped limit. Section IV is then de-
voted to calculating the band structure of a hexagonal crystal
subject to substrate potentials. Discussing first the case of a
free crystal, we explain in Sec. IV B our assumptions con-
cerning the substrate potential and discuss in Sec. IV C the
band structure and phonon spectrum for crystals exposed to
various combinations of different substrate potentials. There
are several ways to access experimentally the phonon band
structure of colloidal crystals. We briefly discuss these pos-
sibilities in Sec. V. One way is to determine the phonon
spectrum from a measurement of the mean-square displace-
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ment of the colloids in the crystal which in Sec. V A we
show to be connected to the phonon spectrum through a
Laplace transformation. Section VI finally discusses the
question whether the elasticity of 2D matter can be modified
externally in the same way as the band structure.

II. THEORY OF LATTICE DYNAMICS

To introduce our notation we start by briefly recapitulat-
ing the essentials of the classical theory of lattice dynamics
�24�. We consider a 2D crystalline system of Brownian par-

ticles subject to a commensurate external potential. Let R� �l�
be the vector pointing to the lattice site l and R� �ll��=R� �l�
−R� �l�� the difference vector between two lattice points. The

displacement of a particle from R� �l� is denoted by u��l�, so

that r��l�=R� �l�+u��l� is the position of particle l. In the har-
monic approximation, the total potential interaction energy V
of the system is approximated by the expansion

V = V�0� +
1

2 �
l,l�,�,�

����ll��u��l�u��l�� , �1�

where

����ll�� = � �2V

�u��l��u��l��
�

eq
�2�

is the second derivative of V with respect to the displace-
ments u��l� and u��l�� �� ,�=x ,y�, to be taken in the equi-
librium configuration. The sum over l and l� in Eq. �1� is
over all N-lattice sites of the system; the static term V�0� in
this equation is not relevant in the present context and is set
to zero while the linear term in the expansion has already
been omitted as it must vanish in an equilibrium configura-
tion. The potential energy V is the sum of two terms: one
term VL arising from the external potential created by the
laser light and another term V0 that results from the interac-
tion between the particles of the free crystal. Correspond-
ingly, ����ll�� splits into ���

0 �ll�� and ���
L �ll��, where fur-

ther below it is shown that the latter quantity is diagonal in l.
Hence,

����ll�� = ���
0 �ll�� + ���

L �ll�. �3�

Consideration of a rigid-body translation of the free crystal
leads to the relation

�
l�

���
0 �ll�� = �

l�

���
0 �0l�� = 0, �4�

which implies that

�
l�

����0l�� = ���
L . �5�

With ����ll�� we come to the dynamical matrix of our prob-
lem,

D���q�� = �
l�

����ll��eiq� ·R� �l�l� = �
l�

����0l��eiq� ·R� �l��, �6�

which, like ����ll�� in Eq. �3�, decomposes into two terms,

D���q�� = D��
0 �q�� + D��

L �q�� . �7�

Let ��q� j� be the jth eigenvalue of D���q�� �j=1,2� and e��q� j�
the corresponding eigenvector. Hence,

�
�

D���q��e��q� j� = ��q� j�e��q� j� , �8�

where e��−q� j�=e�
*�q� j� and

�
�

e�
*�q� j�e��q� j�� = � j j�, �

j

e�
*�q� j�e��q� j� = ���. �9�

We are now in the position to transform u��l� to symmetry-
adapted coordinates,

Q�q� j� =
1

�N
�
l,�

u��l�e�
*�q� j�e−iq� ·R� �l�, �10�

u��l� =
1

�N
�
q� ,j

Q�q� j�e��q� j�eiq� ·R� �l�, �11�

where again Q�−q� j�=Q*�q� j�. The sum over q� in Eq. �11� is
to be understood as the usual sum over the discrete set of N
allowed q� values. We recall that

1

N
�

q�
e−iq� ·R� �l�l� = �ll�,

1

N
�

l

e−i�q�−q���·R� �l� = �q�q��. �12�

Introducing the discrete Fourier transform of u��l�,

u��q�� =
1

�N
�

l

u��l�e−iq� ·R� �l�, �13�

we can write Eq. �10� in a more compact form as

Q�q� j� = e�*�q� j� · u��q�� . �14�

With Eqs. �9�, �11�, and �12�, Eq. �1� can now be written as

V =
1

2�
q� ,j

��q� , j��Q�q� j��2. �15�

III. LANGEVIN EQUATION FOR COLLOIDAL
CRYSTALS

To further prepare our considerations below, we next in-
troduce an equation of motion for a colloidal particle in the
crystal. Colloidal crystals differ from atomic crystals not
only in particle size and lattice constant but also regarding
the dynamics, which is different due to the hydrodynamic
interaction that arises when moving colloidal particles ex-
change momentum through the solvent. The viscous solvent
causes friction, which strongly dampens the lattice vibrations
�16,18�. Hydrodynamics and the phonon dispersion curves of
overdamped colloidal crystals have been studied experimen-
tally using dynamic light scattering �15–19�. Theoretically,
the lattice dynamics of colloidal systems has been treated in
analogy with solid-state theory, the only modification being
the incorporation of friction and hydrodynamics. For lattice
dynamic theories with hydrodynamic interaction, see
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�16,20–23�. We here follow the Langevin treatment of the
lattice dynamics first suggested by Hurd et al. �16�, but ig-
nore hydrodynamic interactions and include just the simple
Stokes friction. For an even more simplified dynamical de-
scription of colloids in crystals see �25�.

We consider the Langevin equation in the overdamped
limit which reads

�
�u��l�

�t
= −

�V

�u��l�
+ f��l,t� , �16�

with �� 	x ,y
 and � being the friction coefficient. Here,
f��l� is the usual stochastic force for which we assume that

�f��l,t�� = 0, �f��l,t�f���l�,t + ��� = 	�����ll�����,

�17�

with a constant 	 to be specified later. Replacing in Eq. �10�
u��l� by f��l�, we obtain the conjugate of f��l�, denoted in
the following by F�q� j�. Using Eqs. �9� and �12�, one can
show that Eq. �17� translates into

�F�q� j,t�� = 0, �F*�q� j,t�F�q��j�,t + ��� = 	�����q�q��� j j�.

�18�

Using Eq. �1� in Eq. �16� we obtain

�u̇��l� − f��l� + �
l�,�

����ll��u��l�� = 0. �19�

Replacing now u��l� and f��l� by their respective expression
�11�,

�
q� ,j
	�Q̇�q� j� − F�q� j�
e��q� j�eiq� ·R� �l�

+ Q�q� j��
�

e��q� j��
l�

����ll��eiq� ·R� �l��� = 0 �20�

and using then Eq. �8� we find

�
q� ,j

�	�Q̇�q� j� − F�q� j� + Q�q� j���q� j�
e��q� j�eiq� ·R� �l�� = 0,

�21�

where we had to insert 1=eiq� ·R� �l�e−iq� ·R� �l�. Because of Eqs. �9�
and �12�, we can conclude that

�Q̇�q� j� − F�q� j� + Q�q� j���q� j� = 0, �22�

which is the equation which our considerations in Sec. V A
are based on.

IV. BAND STRUCTURE OF A HEXAGONAL CRYSTAL
SUBJECT TO A SUBSTRATE POTENTIAL

The set of eigenvalues ��q� j� of the dynamical matrix cor-
responding to a particular j forms the jth band, while the set
of bands constitutes the phonon band structure. This band
structure is calculated in this section for our problem at hand.
We start by first considering D��

0 �q�� in Eq. �7�—i.e., the dy-
namical matrix of a free hexagonal crystal.

A. Free crystal

For a system with particles interacting with central forces,
���

0 �0l� takes the form �Eq. 29.3 in �24��,

���
0 �0l� = − p1�R���� − p2�R�

R�R�

R2 �
R� �l0�

, �23�

where R is the modulus of the vector with component R� or
R�. This expression has to be evaluated at the relative lattice

vector R� �l0�=R� �l�. To simplify the notation we have intro-
duced the two functions

p1�r� =

��r�

r
, p2�r� = 
��r� −


��r�
r

, �24�

where 
�r� is the pair interaction potential between two col-
loidal particles at a distance r while the prime denotes the
derivative of 
�r� with respect to r.

In the following we need the three unit vectors pointing to
the lattice points �10�, �11�, and �01� of a hexagonal lattice
�see Fig. 1�,

e�̂10 = e�y, e�̂11 =
�3

2
e�x +

1

2
e�y, e�̂01 = e�̂11 − e�̂10. �25�

As a short hand notation of these three vectors we introduce

e�̂� with the index � referring to the indices of the three lattice
sites, �=1,2 ,3= �10� , �11� , �01�. The remaining three lattice
sites �−1,0�, �−1,−1�, and �0,−1� of the first-neighbor shell
are referred to by −�. Evaluating Eq. �23� for a hexagonal
lattice with nearest-neighbor interactions we may use this
notation to write

���
0 �− �� = ���

0 ��� = − p1�a���� − p2�a�ê��ê��, �26�

with a being the lattice constant. ���
0 �00� then follows from

Eq. �4�. Using these expressions in Eq. �6� and introducing
the abbrevation

c��q�� ª 2�1 − cos�e�̂� · q�a�� , �27�

we can now write the dynamical matrix of a hexagonal lat-
tice as follows:

10

11

01

e
y

e
x

a

FIG. 1. Unit vectors e�x and e�y, lattice constant a, and the first-
neighbor shell lattice points of a hexagonal lattice.
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D��
0 �q�� = − �

�=1

3

���
0 ���c��q�� = p1�a�����

�

c��q��� + p2�a�

��
�

ê��ê��c��q��� . �28�

B. Periodic substrate potential

We next determine D��
L �q�� in Eq. �7�. The hexagonal crys-

tal is exposed to a periodic substrate potential U of the form
U�r��=U0�1−cos �k� ·r���. Potentials of this shape can be real-
ized experimentally by interfering two laser beams where
both the wave vector k� and the amplitude U0 can be varied
continuously. We here do not intend to discuss the problem
in its full generality, but focus instead on the more practical
case of commensurate structures where k� is identical to a

lattice vector G� of the reciprocal lattice. This choice implies
that the distance between two successive local minima of the
substrate potential matches the distance between those neigh-

boring lattice lines whose normal vector is parallel to G� .
Thus, if only one lattice site is located in a local minimum of
the substrate potential, then all sites of the crystal are located
in such minima. It is obvious that the same minimum of the
one-dimensional cosine function is occupied by all those
sites which together form one common lattice line �from the

set of lattice lines indexed by the vector G� �. Expanding

U�r�� = U0�1 − cos �G� · r��� �29�

about a lattice site R� and remembering that G� ·R� =2n with n
being an integer, we obtain for a small displacement u� =r�

−R� the parabolic external potential,

U�u�� =
U0G2

2
�G�̂ · u��2, �30�

where G� =GG�̂ with G being the absolute value of G� . Each
particle of the crystal is thus exposed to a restoring external

force along ±G�̂ , which results from an external harmonic
potential with a spring constant U0G2.

In the following, we will consider a single substrate po-
tential or a combination of two substrate potentials of the
form of Eq. �30�. These potentials are parametrized by

�U0
1 ,G� �1

� and �U0
2 ,G� �2

� where �1 ,�2� 	0,1 ,2 ,3 ,4
 refer to

the vectors G� 0=0� and

G� 1 = G1e�x, G� 2 = G2��3

2
e�x +

1

2
e�y� ,

G� 3 = G3�1

2
e�x +

�3

2
e�y�, G� 4 = G4e�y , �31�

where

G1 = G3 =
4

�3a
, G2 = G4 =

4

a
. �32�

The vector G� 0 is needed to describe the case where only one
substrate potential is present. Equipped with this set of pa-
rameters, the potential energy VL arising from the interaction
between the substrate potential and the colloids may be writ-
ten as

VL =
1

2�
l

	U0
1�G� �1

· u��l��2 + U0
2�G� �2

· u��l��2
 . �33�

From Eq. �2�, it then follows that ���
L �ll�� is diagonal in l

and that ���
L in Eq. �3� reads

���
L = �U0

1G� �1
G� �1

+ U0
2G� �2

G� �2
���. �34�

From Eq. �6� we see that D��
L �q��=���

L and we finally arrive
at the dynamical matrix of the full problem,

D���q�� = D��
0 �q�� + ���

L , �35�

with D��
0 �q�� from Eq. �28� and ���

L from Eq. �34�.

C. Band structure and phonon spectrum

Diagonalizing Eq. �35� we obtain the set of eigenvalues
��q� j� which constitute the phonon band structure of our sys-
tem. We consider the following six combinations of vectors

G� �1
and G� �2

in Eq. �34�:

a b c d e f

�1 1 0 1 1 1 2

�2 0 2 2 3 4 4

�36�

where the first line distinguishes the different cases and
where the indices of the second and third lines refer to the
vectors defined in Eqs. �31� and �32�. In cases �a� and �b� the
substrate potential has a modulation in just one direction
while all other cases refer to situations with superposed
modulations in two directions. It is evident from general
symmetry considerations that case �a� comprises all possible

cases with a modulation in just one direction and a G� �1
vec-

tor corresponding to a first-order Bragg peak. The same ap-

plies to case �b� with a G� �1
vector corresponding to a

second-order Bragg peak. Cases �c�–�f�, furthermore, list all
possible combinations of the two modulations of cases �a�
and �b�. Therefore, the six cases considered here comprise all
possible cases if one concentrates on modulations in two
directions and first- and second-order Bragg peaks only.

All six cases are depicted in Fig. 2 showing the first Bril-
louin zone �BZ� of the reciprocal lattice. Also shown is the
first BZ of a free crystal with the three high-symmetry points
�, M, and K. As usual, band structures are visualized by
plotting the bands along the axis of the BZ that join these
symmetry points �thick solid line in Fig. 2�. Note that this
line circumvents that part of the BZ which is the smallest
repeat unit of the band structure; it is the “irreducible sec-
tion” of the BZ and comprises for the free crystal just 1 /12th
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of the entire BZ. The substrate potential, though conserving
the hexagonal symmetry of the lattice, leads to a reduction of
the symmetry regarding the system of springs, with the effect
that the irreducible section of the BZ increases. In case �a�
�case �b�� the substrate potential has a sinusoidal modulation

along the ±G�̂ 1 �±G�̂ 2� direction �dashed lines in Fig. 2�. The
irreducible part of the BZ now comprises one-fourth of the
total area of the BZ. Allowing for modulations along two
directions as in cases �c�–�f�, the irreducible section becomes
as large as one-half of the BZ, with case �e� as the only
exception where this section is again only one fourth of the
BZ.

D���q�� depend on four parameters p1�a� and p2�a� from
Eq. �24� and U0

1 /a2 and U0
2 /a2 in Eq. �34�. It can be shown

that p1�a� is small compared to p2�a� and that it has only a
minor effect on the band structure �26�. In order to reduce the
dimensionality of the parameter space, we set p1�a� to zero.
Furthermore, we set p2�a�=k0 and take k0 as a reference
spring constant; i.e., we quantify D���q�� and the resulting
band structure in terms of k0. We are thus left with just two
independent parameters

k1 = U0
1�G�1

�2, k2 = U0
2�G�2

�2, �37�

with G�1
and G�2

from Eq. �32�, depending on what case in
�36� is considered. This permits us to study our problem
quite generally for various combinations of k1 /k0 and k2 /k0.

Figure 3 shows the band structure for all six cases of Fig.
2, setting k1=4k0 and k2=0 in case �a�, k1=0 and k2=4k0 in
case �b�, and k1=k2=4k0 in cases �c�–�f�. To highlight the
effect caused by the substrate potential, we added to all
graphs the band structure of the free crystal. On paths 5, 6,
and 8 in case �a� �paths 1, 3, and 4 in case �b�� we observe
that the shape of the band structure is not changed by the

7

1

3

4 8
6

5

2

� M

K

5

6

7

8

case a

4
3

1

2

8
7

6

4

1
5

1

3

2

5

6

7
8 8

7

6

5
1

4
2

3

spontaneous
crystal

case c

case b

case d

case e case f

FIG. 2. The first Brillouin zone of the reciprocal lattice of a 2D
hexagonal crystal �gray solid line�, for a free crystal and for crystals
subject to commensurate periodic potentials with modulations in
different directions �dashed line�. The path enclosing the irreducible
section of the first Brillouin zone is plotted as a thick solid line. The
numbers label the sections of this path along which the band struc-
ture is determined.
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FIG. 3. Phonon band structures ��q� j� of a 2D hexagonal crystal
�dashed line� and of a crystal subject to commensurate external
potentials �solid line� for the six cases specified in Fig. 2. The gray
numbers correspond to the numbers in Fig. 2, identifying the sec-
tions of the path along which ��q� j� is determined. �k1 /k0 ,k2 /k0� is
�4,0�, �0,4�, �4,4�, �4,4�, �4,4�, �4,4� in �a�–�f�.
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substrate potential but that only one band is shifted while the
position of the other has remained unaltered. Bands having
polarization vectors �14� that point in a direction perpendicu-
lar to the direction of the modulation are not affected by the
substrate potential. Consider, for example, a single modula-
tion along the e�x direction—a situation that we have in case
�a�. The lower bands on paths 5 and 8 of the free crystal in
Fig. 3�a� have polarization vectors that are perpendicular to q�
�transversal modes�, thus pointing into the e�y direction on
path 5 and in the e�x direction on path 8. It is clear then that a
modulation in e�x direction shifts the transversal band up-
wards on path 8, but does not have an effect on the bands on
path 5. Only on path 7 in case �a� �path 2 in �b�� does the
substrate potential affect the shape of the bands; it flattens
out the bands such that in case �a� almost no dispersion is
left. Case �c� is a superposition of the substrate potentials in
�a� and �b�, and accordingly, the resulting band structure can
to a good approximation be understood as a superposition of
the structures in �a� and �b�. Case �d� �case �f�� is a superpo-
sition of twice case �a� �case �b��, with the two superposed
modulations being in two different directions �see Fig. 2�. It
is interesting to observe that although a complicated band
structure arises in these cases, one can still identify sections
where the bands are only shifted while its shape remains
unchanged. Case �d� is symmetric about qa=0; this symme-
try would not appear if k1�k2. Rather special is case �e�
�k1=k2=4k0� where the superposed modulations of cases �a�
and �b� are perpendicular to each other. Here, the whole band
structure is just shifted by 4k0 while its shape is completely
conserved. In other words, �e� represents a case where the
substrate potential is tuned such that the resulting system of
additional “springs” is again perfectly compatible with the
hexagonal symmetry.

We next study the dependence of the band structure on k1
and k2 and take case �e� as an example. It is convenient to
condense the band structures into a one-dimensional func-
tion, the phonon spectrum, defined as

G��� =
1

2N
�
q� j

�„� − ��q� j�… . �38�

As this distribution is normalized to 1,

�
0

�

G���d� = 1, �39�

we may interpret it as the fraction of eigenvalues of the dy-
namical matrix to be found in the interval �� ,�+d��.

Figure 4 shows the band structures �left column� and pho-
non spectra �right column� for case �e� in Fig. 2. Figure 4�a�
starts with the free crystal, in �b� and �c� k1 is increased from
0 to 4k0 in steps of 2k0, and in �d� to �f� k2 is then added,
increasing to 6k0, again in steps of 2k0. In order to demon-
strate the symmetry breaking of the band structures by the
substrate, these graphs are complemented in Fig. 5 by two-
dimensional contour plots of the band structures.

Figure 4�a� shows that each branch leads to one infinity in
G��� which can be fitted to the expression ln��−�c�. These
logarithmic singularities correspond to those parts in the
band structure where ��q� j� has a saddle point. We have

marked these saddle points by solid circles and the labels S1

and Su in the band structure plots of Fig. 4 and the contour
plots of Fig. 5. Minima and maxima in ��q� j� lead to jump
singularities. Crosses and labels J0, J1, and J2 mark these
points in the band structures. The phonon spectrum of Fig.
4�a� shows furthermore a sharp kink between the two peaks
which result from the points where the upper and lower
bands touch each other.

In going from Fig. 4�a� to Fig. 4�c� we start to decouple
the bands and G��� decomposes into two �still overlapping�
parts GL��� and GH���, one for each band. The part GH���

FIG. 4. Band structures for case �e� in Fig. 2 and corresponding
phonon spectra, for various substrate potential strengths.
�k1 /k0 ,k2 /k0� is �from �a� to �f�� �0,0�, �2,0�, �4,0�, �4,2�, �4,4�,
�4,6�. The gray numbers correspond to the numbers in Fig. 2, case
�e�, identifying the sections of the path along which ��q� j� is
determined.
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for the higher band shows one logarithmic divergence �cor-
responding to the saddle point Su marked in Fig. 5�b� and the
band structure of Fig. 4�c�� and two jump singularities which
result from the two maxima J1 and J2, which we have also
marked in the band structures. The part GL��� for the lower
band shows a splitting of initially one logarithmic singularity
into two such singularities. This reflects the fact that the six
degenerate saddle points of type S1 in Fig. 5�a� split into two
saddle points of type S1

1 and four saddle points of type S2
1 �see

Fig. 5�b��. In Fig. 4�d� then k2 takes a nonzero value, result-
ing in a shift of GL��� to higher �, such that a further in-
crease of k2 to k1=k2=4k0 leads in �e� to a phonon spectrum
which is again the spectrum of �a�, just shifted to the right by
�=4k0. Note that also the spectrum in �d� is the same as that
in �b�, just that it is shifted by 2k0. Hence, in �a�–�c� one
substrate potential produces a perturbation whose effect in
�d� and �e� the second substrate potential is able to cancel
again �except for the shift of the entire band structure�. A
more complicated phonon spectrum with several singulari-
ties is produced in �f� when k2 is further increased so that the
two band systems heavily interpenetrate each other. The
band structures of �f� are also shown as contour plots in Fig.

5�d�. If all four pictures of Fig. 5 are seen as a sequence—
�k1 /k0 ,k2 /k0� is �0,0�, �4,0�, �4,4�, �4,6�—we observe in �b� a
reshaping of the band structure in the x direction and then on
increasing k2 first a restoration of the structure of �a� in �c�,
followed in �d� by a reshaping in the y direction when k2 is
stronger than k1.

V. WAYS TO PROBE THE BAND STRUCTURE

Ways to access experimentally the phonon band structure
of colloidal crystals are discussed in this section. The first
idea is to determine the phonon spectrum from a measure-
ment of the mean-square displacement �MSD� of the colloids
in the crystal. We demonstrate in the following section that
phonon spectrum and MSD are related to each other by a
Laplace transformation.

A. Relation between phonon spectrum and mean-square
displacement

We return to the Langevin equation in the �q� j� represen-
tation, Eq. �22�. It has the formal solution

Q�t� = Q0e−��/��t + e−��/��t 1

�
�

0

t

e��/��t�F�t��dt�, �40�

where for clarity we have suppressed �q� j� in the arguments
of Q, Q0, F, and �. Using this expression and exploiting Eq.
�18�, we can calculate the phonon autocorrelation function

�Q�t + ��Q*�t�� = ���Q0�2� −
	

2��
�e−��/���2t+�� +

	

2��
e−��/���,

�41�

where �¯� denotes the ensemble average. Realizing that eq-
uipartition must apply for �=0 and t→� we can evaluate the
constant 	 and obtain

	 = 2�kT , �42�

and hence Eq. �41� becomes

�Q�t + ��Q*�t�� =
kT

�
e−��/��� + e−��/��2t

����Q0�2�e−��/��� −
kT

�
e−��/���� . �43�

We observe for �=0 that ��Q�2� starts from ��Q0�2� and ap-
proaches its equipartition value kT /� within a time period
roughly given by � / �2��. For ��0, kT /� is not approached,
but the smaller value e−��/�kT /�. For times larger than
� / �2��, we may thus approximate Eq. �43� by the simple
expression

�Q�t + ��Q*�t�� �
kT

�
e−��/���. �44�

Having this in mind, we now turn to the quantity
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FIG. 5. 2D contour plots of the band structure in the first Bril-
louin zone for case �e� in Fig. 2 and for the following combinations
of �k1 /k0 ,k2 /k0�: �0,0�, �4,0�, �4,4�, �4,6� from �a� to �d�. �a� is the
free crystal; �b� represents also case �a� of Fig. 2. The left �right�
column of graphs displays the higher �lower� bands.
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c��� = �u��t + �� · u��t��l

=
1

N
�
l,�

�u��l,t + ��u��l,t��

=
1

N
�
q� ,j

�Q�q� j,t + ��Q*�q� j,t�� , �45�

where we used Eqs. �9�, �11�, and �12�. The index l at �¯�l

serves as a reminder that in addition to the ensemble average,
an average over all lattice sites is to be performed. Writing
this expression with G��� defined in Eq. �38� and inserting
Eq. �44�, we arrive at

c��� =� d�G���
2kT

�
e−��/���. �46�

The time-dependent MSD �MSD��� is defined as

�MSD��� = ��u��t + �� − u��t��2�l = 2�c�0� − c���� , �47�

with c��� from Eq. �45�. With Eq. �46� we obtain

�MSD��� = 2c�0� = 4kT� d�
G���

�
, �48�

relating the phonon spectrum to the absolute MSD. The
physical meaning of c��� now becomes obvious from

c��� =
1

2
��MSD��� − �MSD���� = 2kT� d�

G����
�

e−��.

�49�

Writing c��� in this form we recognize that it can be under-
stood as the Laplace transform of G��� /�. In that sense, the
Laplace transform of the phonon spectrum is directly related
to the time-dependent MSD. Thus one experimental way to
get access to the phonon band structure is by first measuring
the time-dependent MSD in order to determine the function
c��� and by then applying the inverse Laplace transform of
c��� to obtain G��� /�.

Expressing Eq. �49� in reduced quantities ��=�k0 /� and
��=� /k0 using the reference spring constant k0, we obtain

k0c���
kT

= 2� d��
G����

��
e−����. �50�

Figure 6 shows �MSD��� and �MSD��� in these units. The
time-dependent MSD in �a� is obtained from integrating the
phonon spectra plotted in Fig. 4. A logarithmic behavior is
observed for the first three cases where k2=0 and a saturation
behavior is found for the last three cases where both sub-
strate potentials have a finite strength. Figure 4 reveals that
G�0�=0 in the last three cases, while lim�→0G����0 in
cases �a�–�c� which according to Eq. �48� must lead to a
logarithmic divergence of �MSD���. In other words, the loga-
rithmic behavior of the MSD we observe in Fig. 6�a� can be
associated with the jump singularity of G��� at �=0. Only if
this jump singularity is shifted away from �=0 does the
MSD reach a finite level as in cases �d�–�f�.

This finite level of the MSD �MSD��� is plotted in Fig.
6�b� as a function of k1 /k0 at fixed k2=4k0 for the six cases

specified in Fig. 2. �MSD��� is generally the lower the stron-
ger the substrate potential is; it also decreases in going from
�a� and �b� to cases �c�–�f� when the movement of the par-
ticles is further confined by the second substrate potential.
However, we hasten to stress that the curves of cases �a� and
�b� in Fig. 6�b� are not converged, but depend on the bin size
d� chosen in the integration of Eq. �48�. This is illustrated in
Fig. 6�c� where �MSD��� is computed using different bin
sizes. We observe that the results of case �e� of Fig. 2 do not
depend on the bin size while those for case �a� show such a
dependence. The figure reveals that �MSD��� is in fact infin-
ity in cases �a� and �b�, in agreement with what we have
already observed in Fig. 6�a�.

The logarithmic divergence of �MSD��� displays the well-
known effect �27–29� that long-wavelength fluctuations �or,
equivalently, the jump singularity of G��� at �=0� in 2D
crystals lead to an instability. As a consequence of this effect,
a 2D crystal has no true long-range order, but only a quasi-
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FIG. 6. �a� Time dependence of the mean-square displacement
�MSD��� for the six cases considered in Fig. 4. �b� Mean-square
displacement �MSD��� as a function of the strength k1 of the sub-
strate potential for the six cases specified in Fig. 2. If required, k2 is
set to 4k0. �c� shows for cases �a� and �e� in Fig. 2 the dependence
of �MSD��� on the bin size d� of the phonon spectrum G��� for four
different bin sizes �see plot legend for details�.

H. H. VON GRÜNBERG AND J. BAUMGARTL PHYSICAL REVIEW E 75, 051406 �2007�

051406-8



long-range order characterized by an algebraic decay of the
translational correlation function �4�. Figure 6, in essence,
demonstrates that modulations in two directions are required
to cure this instability because only modulations in two di-
rections are capable of shifting the jump singularity of G���
away from �=0. Modulations in just one direction will in-
evitably lead to such a singularity at �=0 because one band
of the free crystal will always remain unaffected by the pres-
ence of the substrate potential which is enough to let G���
jump at �=0. We should also remark that k1 and k2 do not
need to have a value above a certain threshold in order to
overcome the instability, but that it suffices to demand that
k1�0 and k2�0 in order to prevent �MSD��� from diverging.

Returning finally to Fig. 4, we recall the observation that
in �a�–�c� one substrate potential produces a disturbance
whose effect in �d� and �e� the second substrate potential is
able to cancel, restoring the original system of springs of the
free crystal. One is then tempted to think that the shift of the
phonon spectrum is immaterial. However, we now under-
stand that this picture is incomplete as it ignores the impor-
tant stabilizing effect which arises as the result of the shift of
the phonon spectrum.

B. Direct determination of the band structure

The most direct way to get experimentally access to the
band structure results from exploiting the equipartition theo-
rem which demands that every term in the sum of Eq. �15�
have on average an energy kT /2. Hence,

��q� j���Q�q� j��2� = kT , �51�

which Eq. �14� allows us to rewrite as

��q� j� =
kT

��e�*�q� j� · u��q���2�
. �52�

The video-microscopy technique records the displacements
u��l� of all colloidal particles of a crystalline configuration
from which we can easily evaluate the right-hand side of Eq.
�52�. In that way, band structures of colloidal crystals have
been determined in Refs. �1,30,31�.

An alternative way to measure ��q� j� has not yet been
experimentally realized. It is based on Eq. �44� which we can
rewrite to define a normalized phonon autocorrelation func-
tion

y�q� j,�� =
�Q�q� j,t + ��Q*�q� j,t��

��Q�q� j��2�
= e−��q� j��/�. �53�

These functions can again be directly evaluated from video-
microscopy data and allow us to determine the phonon decay
times

T�q� j� =
�

��q� j�
, �54�

from which we can again gain access to ��q� j�. Note that this
equation corresponds to what is known as a “dispersion re-
lation” in atomic systems, relating frequencies to wave vec-
tors. In our case, the overdamped limit, we have to relate

relaxation times to wave vectors. Ohshima and Nishio �25�
therefore refer to this equation as the “overdamped disper-
sion relation.”

VI. ELASTICITY AND BEHAVIOR AT LONG
WAVELENGTHS

A. Elasticity

This section addresses the question whether or not it is
possible to tune the elastic behavior of colloidal crystals by
means of the substrate potential. Starting from the theory of
lattice dynamics we get to the elastic constants by applying
the method of homogeneous deformation; see �32�. We sub-
ject all particles in the lattice to a linear homogeneous trans-
formation

R���l� = R��l� + �
�

u��R��l� , �55�

with the constants u�� being the deformation parameters.
This equation implies that

u��l� = �
�

u��R��l� . �56�

The elastic constants can now be derived by calculating the
change in potential energy caused by this deformation. The
total potential energy is the sum of V0 and VL, with VL given
by Eq. �33� which we rewrite as

VL =
1

2�
i=1

2

U0
i �

l,�,�
G�i,�

G�i,�
u��l�u��l� . �57�

Let us denote the new potential energy by V�=V0�+VL�. In-
serting Eq. �56� into Eq. �57�, we obtain, for VL�,

VL� =
1

2 �
�,�,�,�

C����
L u��u��, �58�

where

C����
L = �

i=1

2

U0
i �

l

G�i,�
G�i,�

R��l�R��l� �59�

can be interpreted as the change in the elastic constants
caused by the substrate potential. Depending on the choice of

the two vectors G� �1
and G� �2

, the constants C����
L are either

zero or infinity. For those constants that are zero, we may
conclude that the substrate potential has no effect at all on
the corresponding deformation such that the elastic constants
are those of the free crystal, while for all other constants, the
presence of the substrate potential inhibits the corresponding
deformation from occurring. We observe that the circum-
stance that C����

L can become infinity results from the qua-
dratic dependence of VL on u��l�—a dependence that itself
arise from an expansion which is valid only for small dis-
placements. Using the full expression �29� in our analysis we
would avoid this divergence. Still the resulting constants
would depend on U0

1 and U0
2—i.e., the energy barrier be-

tween neighboring lattice lines. Only in that sense are the
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constants tunable by the substrate potentials. However, for
practical reasons, these barriers should be chosen high
enough �larger than a few kT� to prevent thermally excited
colloids from crossing them. This in practice means that the
elastic constants are at least one order of magnitude larger
than those of the free crystal.

B. Expanding the dynamical matrix

To provide an approximate analytic expression for the
band structure near the center of the BZ, we next expand the
dynamical matrix in Eq. �35� about q� =0. We start by consid-
ering D��

0 �q�� from Eq. �28�. Recalling the defining equation
�6� and expanding this expression up to second order, we
obtain

D��
0 �q�� = −

1

2 �
l,�,�

���
0 �0l�R��l�R��l�q�q�, �60�

where the zeroth-order term vanishes because of Eq. �4�
while the first-order term is identical to zero because of the
symmetry of the lattice and Eq. �26�. Inserting Eq. �23� into
Eq. �60� results in

D��
0 �q�� = va�

�,�
�C����

0 − p�������q�q�, �61�

where va=�3a2 /2 is the area of the unit cell and p is the
pressure while

C����
0 =

1

2va
�

l

p2„R�l�…
R��l�R��l�R��l�R��l�

R2�l�
�62�

are the elastic constants of the free crystal. A colloidal crystal
with purely repulsive interaction requires a finite pressure in
order not to explode. Therefore, the stress tensor has nonzero
diagonal elements given by p,

T�� = − p��� =
1

2va
�

l

p1„R�l�…R��l�R��l� , �63�

an equation that we have already used in Eq. �61�. Since
C1111

0 − p=2�+� and C1122
0 − p=� with � and � being the

two Lame coefficients, we can finally write down D��
0 �q��,

D0�q�� � va��2� + ��qx
2 + �qy

2 2�� + p�qxqy

2�� + p�qxqy �qx
2 + �2� + ��qy

2 � ,

�64�

recalling that C1111
0 =C2222

0 , C1122
0 =C1212

0 =C2211
0 and that

C1211
0 =C2111

0 =C1222
0 =C2122

0 =0. In other words, in the q�
=qxe�x direction and in the q� =qye�y direction, the two bands
decouple and have a parabolic form va�q2 and va�2�
+��q2.

The second term in Eq. �35� is ���
L which is not depen-

dent on q� , so that the whole matrix has to be added to Eq.
�64� to obtain an approximation of D���q��. Approximate ex-
pressions for the bands then follow from the eigenvalues of
this matrix. For example, choosing the q� =qxe�x direction,
D���q�� is given by

D�q�� � �D11�q� �12
L

�12
L D22�q�

� �65�

in the neighborhood of q=0 with D11�q�=�11
L +va�2�

+��q2 and D22�q�=�22
L +va�q2. The two bands are then

given by

��q� , ± �

�
1
2 	D11�q� + D22�q�

± ��D11�q� + D22�q��2 − 4�D11�q�D22�q� − ��12
L �2�
 .

�66�

VII. SUMMARY AND CONCLUDING REMARKS

In this paper we have explored 2D colloidal crystals that
are exposed to commensurate substrate potentials and stud-
ied how the colloidal lattice dynamics can be changed, tuned
and manipulated by means of these potentials. We have cal-
culated the phonon band structure for various different com-
binations of external modulations. To take account of the
substrate potentials the dynamical matrix of the free crystal
must be supplemented by an additional q�-independent matrix
���

L whose elements can be selectively controlled by chang-
ing the strength of the potentials but also the direction of the
modulations.

We summarize our observations as follows. Substrate po-
tentials �i� break the symmetry of the band structure within
the first Brillouin zone, from its initial sixfold hexagonal
symmetry to the symmetry of the substrate potential, �ii� de-
couple bands by shifting one band while leaving the other
unaffected, and �iii� can be used to change the shape of in-
dividual bands, in cases so effectively that no band disper-
sion remains. For two substrate potentials with modulations
in the perpendicular direction, one can tune the substrate
potentials such that the whole band structure is just shifted
while its shape is completely conserved. In these cases, one
substrate potential produces a perturbation whose effect on
the shape of the bands is canceled by the second substrate
potential; the resulting system of additional “springs” is then
again compatible with the hexagonal symmetry. The only
effect that remains is a shift of the whole band structure and
the corresponding phonon spectrum. This includes a shift of
an important jump singularity of this spectrum near �=0—a
shift which we have seen requires modulations in at least two
directions to occur. The shift of this jump singularity ex-
presses the fact that the crystal becomes locked into the sub-
strate potential’s periodicity, thus acquiring perfect long-
range order. This then allows the mean-square displacement
of the colloids to remain finite. The study of the phonon
spectra has revealed that new jump singularities can be cre-
ated and that a splitting of initially one logarithmic singular-
ity into two such singularities can occur.

We have discussed various methods to experimentally in-
vestigate the predicted effects. Two-dimensional colloidal
suspensions subjected to substrates created by interfering la-
ser beams and observed with a microscope allow direct de-
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termination of the band-structure via the equipartition theo-
rem or, alternatively, the measurement of the phonon decay
times via an analysis of the phonon autocorrelation func-
tions. Another experimental way to get access to the phonon
band structure is by measuring the time-dependent MSD and
exploiting the fact this quantity is directly related to the
Laplace transform of the phonon spectrum, a relation that we
here have established starting from the Langevin equation
for colloidal crystals. We have finally shown that the elastic
constants of the crystal cannot be tuned; they are either not

affected by the substrate potential or affected that strongly
that they effectively suppress the corresponding homoge-
neous deformation.
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